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ABSTRACT 

Stress often is associated with physical and mental health issues. To prevent these 

issues, an early detection of stress is essential. However, for people with an 

intellectual disability effectively expressing stress can be difficult and therefore, the 

necessary intervention can be delayed. An automatic stress detection system could 

help caregivers in early detection of stress development. This can be achieved using 

wearable sensors that continuously record physiology. The changes in physiological 

signals, like in skin conductance can be used to classify moments of stress. The 



 

 

devices recording these signals are however, not always suitable for long term 

measurements. The present study evaluates a newly developed sock integrated skin 

conductance sensor (SentiSock) that does not restrict movement and stays 

comfortable over time. To assess if the sensor can be used for stress detection a 

comparison was made with the Empatica E4, a commonly used wrist-based skin 

conductance sensor. Both sensors were worn by 28 participants (mean age 39.25 ± 

17.04) in a lab study where stress was induced using mathematical exercises. The 

data was used to train a multitask learning neural network for each device, following 

an identical procedure. The models were validated using a 5-fold cross validation that 

resulted in an average balanced accuracy of 0.824 (SD = 0.018) for Empatica E4 and 

0.834 (SD = 0.019) for SentiSock. This demonstrated that both sensors can be used 

to detect stress adequately in lab conditions. Given these results, SentiSock will be 

further investigated for long term measurements. 
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INTRODUCTION 

With a prevalence close to 30 percent in the general population in recent years, stress 

affects many people in society (Salari et al., 2020). Stress does not only affect one’s 

mental health but also has implications for physical health (Cohen et al., 2007). It is 

therefore, highly important to detect stress in early stages to reduce the impact it may 

have on an individual. This may be especially true for people unable to express their 

stress effectively, for example people with a severe intellectual disability (Doodeman 

et al., 2022). Furthermore, stress in people with limited communicative abilities can 

express itself as challenging behavior (Scott and Havercamp, 2014), resulting in a 

reduced quality of life (Gur, 2016) and increased stress and burden in caregivers 

(Panicker and Ramesh, 2019). It is, therefore, important to detect the early built-up 

of stress automatically to ensure a timely response to changes in the patients’ well-

being. This may be achieved using technological solutions that allow for continuous 

monitoring of stress.  

There are numerous ways to automatically detect stress (Gedam and Paul, 2021). 

While many methods have shown promising results, for a successful implementation 

of the technology in daily life, a method that does not limit persons’ freedom of 

movement is required. A widely used solution is the use of wireless wearable devices. 

For stress detection, sensors that record physiological signals are most commonly 

used. This is due to the strong relation between physiology and psychological stress 

(Giannakakis et al., 2019), especially for electrodermal activity (EDA). EDA refers 

to the electric conductivity of the skin. During stressful episodes EDA amplitude 

increases together with the drastic increase in the number of peaks in the signal 

(Boucsein, 2012).  

EDA is a signal that can be recorded at many locations on the body. However, not all 



 

 

body locations give the same measurement quality. The best locations to record EDA 

are at the fingertips, hand palm, forehead and foot (Dooren et al., 2012). The current 

available sensors generally measure EDA on the wrist, although this is found to be a 

suboptimal location (Dooren et al., 2012). The main motivation to record EDA at the 

wrist is that it causes minimal inconvenience and restrictions for the subject. The free 

movement may, however, introduce more movement artefacts, reducing the 

effectivity of these sensors in tasks that require movement of the upper body. In these 

cases measurement of EDA on the foot may result in a better performance (Liu and 

Du, 2018).  

There is a clear relation between emotional state and EDA measured on  the foot 

(Dooren et al., 2012; Frederiks et al., 2019; Liu and Du, 2018). However, using 

current approaches it is uncomfortable to record EDA on the foot. It has been 

suggested to integrate an EDA sensor into a sock to tackle this issue (Liu and Du, 

2018). While there have been several studies that integrated an EDA sensor into a 

sock (Frederiks et al., 2019; Healey, 2011), no viable solution exists so far. To 

investigate the feasibility of a sock with integrated EDA sensor for stress detection, 

the present study evaluates a newly developed sensor integrated wearable called the 

SentiSock (Mentech, Eindhoven, the Netherlands). This sensor was designed for 

stress detection in people with an intellectual disability or dementia. 

A lab study with stress-inducing experiments was designed to evaluate the stress 

detection capability of the SentiSock in healthy participants. By comparing the 

SentiSock to the wrist-based EDA sensor Empatica E4 (Empatica Inc, Boston, United 

States of America), the study aims to demonstrate the accuracy and capability of the 

sock-integrated EDA sensor for stress detection. This will serve as a first step into the 

direction of stress detection for people with special needs. 

DATASET 

A within-subject lab experiment was used to determine the relation between 

subjective and physiological stress. First, three baseline measurements were 

performed: sitting, standing, and walking while watching a neutral video for 5-

minutes each. Then, participants experienced three counterbalanced conditions 

(sitting, standing, and walking), which consisted each of a 5-minute arithmetic task 

followed by a 5-minute neutral rest period. During the arithmetic task, participants 

had to solve equations and add the individual digits of that solution under time 

pressure. The task was designed to elicit stress by adding feedback sounds and a 

ticking digital clock that changed color. The video shown during the baseline and rest 

periods was the Windows “3D Pipes” screensaver. After completion of the three 

conditional tests, the participants were exposed to a cold pressor test (CPT) to induce 

physical stress. During the CPT participants immersed their dominant hand in cold 

water (2-5⁰C) for a maximum of 3 minutes. At the end of the complete experiment, 

the participants were asked to fill in a questionnaire containing items on 



 

 

demographics (gender, age, etc.) and health conditions (medication use, health 

problems, exercise, etc.). The total duration of the experiment was 75 minutes. The 

experiment was carried out in a controlled environment in the lab of Mentech in 

Eindhoven. 

Real-time physiological responses were measured by multiple wearable devices: skin 

conductance on both feet with the SentiSock, and on the wrist using the Empatica E4. 

After each task or rest period, subjective emotional responses were measured using 

the 3-item SAM-scale (Bradley and Lang, 1994). 

For this experiment, participants were recruited using convenience sampling; either 

through the researchers’ personal network or volunteering networks such as 

‘NLvoorelkaar’ and ‘EindhovenDoet’. Given the changes in physiology when aging, 

the study explicitly aimed to include people from all ages. Participation was 

voluntary, and an informed consent was given prior to participation. Participants were 

given a small gift for their participation (i.e., water bottle). The data were collected 

between 01-11-2021 and 10-02-2022. 

MODEL DEVELOPMENT 

Procedure 

To investigate the performance of the SentiSock for stress detection, two models were 

trained. One model used the SentiSock EDA data, while the other model used the 

Empatica E4 EDA data. The models were trained using the following general 

procedure, further explained in the following sections. First, a data cleaning step was 

conducted. Subsequently, EDA features were extracted for both datasets, followed by 

a feature selection procedure. The models were compiled using the same architecture 

and trained using an identical validation scheme. The procedure was kept identical to 

avoid any factors other than the sensors from affecting the performance. 

Data cleaning 

The first step was to exclude data that was not suitable for model training. Data was 

excluded based on two criteria. All periods with corrupt Empatica E4 or SentiSock 

EDA signal were excluded. Additionally, all participants who did not experience both 

stressful and non-stressful states, as indicated by their SAM scores, were omitted. The 

SAM scores were binarized, by labeling values larger than 5 were as moments of 

stress, and below 5 as rest. Following the feature extraction, the feature dataset 

samples with identical or invalid values (e.g. not a number, or infinity) were removed 

and a minimum 30 examples per class per person were required to include the features 

in the study.  

Feature extraction 



 

 

The features were calculated from the raw EDA signal. All features were calculated 

using a sliding window of 20 seconds with an overlap of 10 seconds. In total, 30 

features were extracted. All features were based on the statistical and temporal sets 

in the TSFEL Python package (Barandas et al., 2020). These features were extracted 

for EDA signal from both the Empatica E4 and the SentiSock.  

Feature selection 

The features were selected using the variance influence factor (VIF) (Witten, 2013). 

This factor represents the multicollinearity of the features, indicating which features 

do not add new information and may be removed. Features with a VIF greater than 5 

were excluded. This procedure was applied for both SentiSock and Empatica E4. For 

SentiSock a total of 9 features were included, while for Empatica E4 10 features were 

included.  

Model Architecture 

The selected model used a multitask learning (MTL) neural network based on people-

as-tasks (Jaques et al., 2016; Taylor et al., 2020). In this architecture, a shared layer 

represents the general physiological changes related to stress, while the task (or 

personal) layers represent the person specific physiological changes related to stress.  

The shared layer of the model consisted of 30 neurons and used Swish activation. 

Each personal layer had 10 neurons and also used Swish activation. The output of 

each personal layer used sigmoid activation. The model was using an Adam optimizer 

with a learning rate of 0.0001 and used the binary cross-entropy loss function.  

Model validation 

The models were validated by calculating a set of performance metrics from the 

output associated with the person. Since each person has their own personal layer, it 

was investigated how the model performs on new data from a person on their own 

personal layer. The calculated metrics included the f1-score, sensitivity, specificity, 

and balanced accuracy. To use all available data a 5-fold cross-validation was used. 

To ensure that each person was well represented in each fold, the folds were created 

separately for each person. Afterwards the mean of the different folds was taken to 

evaluate the performance of the model.  

RESULTS  

In total, 51 participants completed the whole experiment. After the data cleaning, a 

sample of 28 participants remained for the analysis (20 males and 8 females; mean 

age = 39.25, SD = 17.04, range = 22-69). In total 12 participants were excluded 

because they did not experience both stress and restful periods as indicated by their 



 

 

SAM scores. Four participants were excluded because of missing Empatica E4 

recordings, that were either corrupt or not recorded. Additionally, five participants 

were removed because of invalid features from the Empatica E4 recording. The 

remaining excluded participants did not have at least 30 examples for both rest and 

stressful moments. 

The results of the model validation using a 5-fold cross-validation on the Empatica 

E4 and SentiSock EDA are shown in Table 1. 

Table 1. 5-fold cross validation results (mean ± SD) for SentiSock and Empatica 

E4 models 

Model f1-score Sensitivity Specificity Balanced 

Accuracy 

SentiSock 0.843 ± 0.017 0.813 ± 0.025 0.855 ± 0.022 0.834 ± 0.019 

Empatica E4 0.832 ± 0.022 0.807 ± 0.022 0.840 ± 0.033 0.824 ± 0.018 

 

DISCUSSION 

The present study evaluated the performance of the SentiSock, a sock-integrated EDA 

sensor for stress detection, by comparing its stress detection capability with that of 

the Empatica E4, a widely used wrist-based sensor. The Empatica E4 and the 

SentiSock model both performed high on f1-score, sensitivity, specificity and 

balanced accuracy. The performance of the SentiSock model was in line with 

previous research on foot-based sensors (Liu and Du, 2018). The present study 

illustrated a negligible difference in performance of the stress detection models 

between the two sensors. Interestingly, the suboptimal location of the wrist for EDA 

measurement (Dooren et al., 2012), did not lead to lower performance. The choice to 

use a foot-based or wrist-based EDA sensor may therefore, be more driven by the 

application or use-case. For example, daily use in a care setting for real-time stress 

detection requires a comfortable sensor that can be integrated in the daily care process 

(Poh et al., 2010). The wrist-based sensors use metal studs to capture the skin 

conductance. These studs press into the skin and eventually may lead to bruises and 

skin damage (Jackson et al., 2019). On the contrary, a sock-integrated sensor consists 

of printed electrodes and electrode pads that feel comfortable and seamlessly integrate 

with the garment of the sock. Future studies should examine the user-friendliness, 

acceptability and applicability of the sock-integrated sensor in clinical practice with 

people with cognitive and communication impairments. 

While the study demonstrated that both Empactica E4 and SentiSock can be used to 

detect stress, it should be noted that the models were trained and validated with lab 

experiments. The lab experiment did not induce stress in all volunteers , which largely 

explains the number of excluded participants. Furthermore, additional samples were 



 

 

omitted due to missing or corrupted data from the Empatica E4, which may have been 

caused by the streaming platform that was used. Due to the validation through a lab 

experiment, it was not possible to assess the performance under daily-life conditions, 

different types of stress, and how the system would perform over long periods of time. 

To conclude a sock-integrated EDA sensor is viable for stress detection. Future 

studies should validate the sock-integrated sensor for stress detection in long term 

care.  

CONCLUSION 

The current study demonstrated the capability of stress detection with a sock-

integrated EDA sensor. The performance of the sensor was evaluated with a neural 

network model, trained with labeled physiological responses to emotional data of 28 

test persons. The stress metrics obtained from the foot-sensor, including the f1-score, 

balanced accuracy, sensitivity, and specificity, were comparable with the stress 

metrics obtained from the wrist-sensor. The high balanced accuracy of 0.834 

demonstrates the capability of accurate stress detection. Furthermore, a sock-

integrated EDA sensor may be more comfortable to wear than the wristband. This 

will be especially relevant in cases where the sensor will be worn for long periods of 

time, like in continuous stress detection. Additionally, the added comfort may help in 

target groups that may not accept noticeable, uncomfortable or restrictive wearables.  
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