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Abstract
In studies of recurrent events, joint modeling approaches are often needed to allow for
potential dependent censoring by a terminal event such as death. Joint frailty models
for recurrent events and death with an additional dependence parameter have been
studied for cases in which individuals are observed from the start of the event pro-
cesses. However, samples are often selected at a later time, which results in delayed
entry so that only individuals who have not yet experienced the terminal event will be
included. In joint frailty models such left truncation has effects on the frailty distri-
bution that need to be accounted for in both the recurrence process and the terminal
event process, if the two are associated. We demonstrate, in a comprehensive sim-
ulation study, the effects that not adjusting for late entry can have and derive the
correctly adjusted marginal likelihood, which can be expressed as a ratio of two inte-
grals over the frailty distribution. We extend the estimation method of Liu and Huang
(Stat Med 27:2665–2683, 2008. https://doi.org/10.1002/sim.3077) to include poten-
tial left truncation. Numerical integration is performed by Gaussian quadrature, the
baseline intensities are specified as piecewise constant functions, potential covariates
are assumed to have multiplicative effects on the intensities. We apply the method to
estimate age-specific intensities of recurrent urinary tract infections and mortality in
an older population.
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1 Introduction

Repeated occurrences of the same type of event, such as incidents ofmyocardial infarc-
tion, recurrent infections, fractures, or tumor relapses, arise in various applications.
If individuals are additionally at risk of experiencing a terminal event such as death,
which will stop the recurrent event process, then dependent censoring of the recur-
rence process is often induced. Therefore, approaches for jointly modeling the two
processes—recurrent events and the terminal event—have been developed. Moreover,
the association between the processes can be of direct interest, for instance, whether
individuals who experience more recurrences also have a higher risk of experiencing
the terminal event, and joint models can provide insights into the direction and strength
of the association between the event processes.

When modeling event processes the time scale t , along which the recurrence and
the terminal event process evolve, has to be chosen and the choice depends on the
specific application. In many clinical studies time since randomization is used as the
time scale, whereas in epidemiological context and in demographic studies age often
is a more relevant time scale.

The choice of the time scale determines the time origin t0, and if individuals come
under observation only at a time t > t0 then this delayed entry has to be accounted
for. In this case data are left-truncated since study entry is only possible if the terminal
event has not been experienced yet. This leads to a length-biased sample (for the time
to terminal event) and accounting for left truncation is standard in survival analysis
(Klein and Moeschberger 2003).

If the recurrence process and the terminal event process are associated then left
truncation has a more wide-ranging effect. Not only is the sample consisting of indi-
viduals who tend to have a lower risk of experiencing the terminal event but also—if
there is a positive association between the two processes—to have a lower risk of
experiencing recurrent events. The data hence are not a random sample of the under-
lying population regarding both processes studied. It is therefore crucial to correctly
adjust for the truncation to obtain valid inferences.

In this paper we study the effect of left truncation in the joint frailty model for
recurrent events and death introduced by Liu et al. (2004). Delayed entry into the
sample implies that the frailty distribution for such individuals differs from the distri-
bution at time t0, due to selective survival, and this change in frailty distribution has
to be incorporated. We demonstrate the effect that neglecting this adjustment has on
the estimation results in this setting, by presenting an extensive simulation study. And
we show how the likelihood can be adapted to correctly incorporate the information
that left-truncated observations provide in this joint model for the two processes. For
practical estimation we extend the method of Liu and Huang (2008) to the current
setting. We illustrate the method by analyzing data from a study of recurrent urinary
tract infections (UTIs) in older residents of long-term care facilities (Caljouw et al.
2014).

The joint frailty model of Liu et al. (2004) allows to examine the shape of the inten-
sity functions of recurrence and death, as well as the potential dependence between
the two processes. The dependence is introduced by a shared individual random effect
entering both the intensity function of recurrence and the hazard of death.An additional
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parameter determines whether the processes are positively or negatively associated,
and how strong this association is. This model has been applied repeatedly in medical
studies (e.g., to study recurrent cancer events as in Rondeau et al., 2007, or recurrent
heart failure hospitalizations as in Rogers et al., 2016) and it has been extended in sev-
eral directions (e.g., to the setting of nested case-control studies in Jazić et al., 2019).
In other models, the frailty affects the intensities of the recurrent events and death in
the same way (Huang and Wang 2004), or the dependence between the processes is
left completely unspecified (Cook and Lawless 1997; Ghosh and Lin 2003).

Left truncation has received varying levels of attention in different frailty models
and in joint models. Several studies have discussed handling left truncation in shared
frailty models for clustered survival data (e.g., Jensen et al. 2004; van den Berg and
Drepper 2016; Rondeau et al. 2017). In a recurrent event setting, Balan et al. (2016)
considered event dependent selection; i.e., individuals were included in the study only
if they had experienced at least one recurrent event in a given time period. Recurrent
event studies with selection dependent on survival were briefly discussed in Cook and
Lawless (2007), but not specifically in the context of frailty models.

The option of delayed entry was mentioned in Rondeau et al. (2007) but no specific
account was provided. At the time of writing, the R package frailtypack, which
can be used for fitting a variety of frailty models, does not provide functionality for
estimating the joint frailty model from left-truncated data (according to the manual of
version 3.5.0, date 2021-12-20, Rondeau et al., 2021).

Extensions to left-truncated data have been considered in some different types of
joint models. Emura et al. (2017) introduced a joint frailty-copula model for two event
times that can be adapted to accommodate left truncation and recurrent event data.
Outside of the class of shared frailty models, Cai et al. (2017) proposed a model
for longitudinal measurements, recurrent events, and a terminal event with inferences
based on estimation equations that can be generalized to allow for left-truncated data.
Liu et al. (2012) presented an estimating equation procedure for a partial marginal
model of recurrent events in the presence of a terminal event with left truncation.
For joint models for longitudinal data and death, incorporation of left-truncated data
was considered for different specifications of models with shared random effects,
for example, van den Hout and Muniz-Terrera (2016, discrete longitudinal response
following binomial or beta-binomial distribution), Crowther et al. (2016, linear mixed
effects model for continuous longitudinal measurements), or Piulachs et al. (2021,
zero-inflated negative binomial longitudinal model).

The rest of the paper is structured as follows. Section 2 first presents the joint frailty
model and the corresponding likelihood in the setting without truncation, and then
introduces the adjustments required for left-truncated data.We also discuss themethod
of estimation. The performance of the method is assessed via simulation studies in
Sect. 3. We also study the effect of ignoring left truncation in various settings. Finally,
we illustrate the approach using data on recurrent UTIs in elderly patients in Sect. 4,
and conclude with a discussion in Sect. 5.
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2 Joint frailty model and left truncation

The joint frailty model for recurrent events and a terminal event has been applied
most frequently in situations in which the time of the terminal event is subject to
independent right-censoring only. In the following, we will first present the model and
the corresponding likelihood for such right-censored data. Then, we will lay out how
certain assumptions and, in particular, the likelihood function are adjusted to the case
of left-truncated data. Throughout, we will often refer to the terminal event as death
for the sake of simplicity.

2.1 Joint frailty model

We consider independent individuals i , i = 1, . . . ,m, who can experience recurrent
events between time t0 = 0 and the time Di of the terminal event. Let Ci denote a
censoring time, which is assumed to be independent of the recurrence and terminal
event processes. An individual can then be observed only up to his/her follow-up
time Xi = min(Ci , Di ), and δi = 1{Di ≤ Ci } will indicate whether the terminal
event occurred before censoring, with the indicator function 1{·}. The at-risk indicator
at time t ≥ 0 is given by Yi (t) = 1{t ≤ Xi }, if individuals enter the study at t0 = 0.

The number of recurrent events experienced by individual i up to time t is recorded
by the actual recurrent event process N R∗

i (t). Similarly, we define the actual counting
process of the terminal event as ND∗

i (t) = 1{Di ≤ t}. However, due to right-
censoring, we can only observe the processes ND

i (t) = 1{Xi ≤ t, δi = 1} and
N R
i (t) = ∫ t

0 Yi (s)dN
R∗
i (s) = N R∗

i (min (t, Xi )). Here, the increment of the recur-
rence process dN R∗

i (t) = N R∗
i ((t + dt)−) − N R∗

i (t−) equals the number of events in
the small interval [t, t + dt), with t− as the left-hand limit.

The observed data of individual i up to time t are given by Oi (t) =
{Yi (s), N R

i (s), ND
i (s), 0 ≤ s ≤ t; zi }, including the observed time-fixed covariate

vector zi . Individual risks will depend on the covariates as well as on the unobservable
frailty value ui , where the frailties ui are independent realizations of a positive random
variable U .

In the joint frailty model introduced by Liu et al. (2004), the observed recurrence
process is assumed to have, conditional on ui , the intensity Yi (t)λi (t |ui ) with

P(dN R
i (t) = 1 | Ft− , Di ≥ t) = Yi (t)λi (t |ui )dt
λi (t |ui )dt = d�i (t |ui ) = P(dN R∗

i (t) = 1 | zi , ui , Di ≥ t).
(1)

Here, Ft = σ {Oi (s), 0 ≤ s ≤ t, ui ; i = 1, . . . ,m} denotes the σ -algebra generated
by the frailty and the observed data. The terminal event process is characterized by
the intensity Yi (t)hi (t |ui ) with

P(dND
i (t) = 1 | Ft−) = Yi (t)hi (t |ui )dt

hi (t |ui )dt = dHi (t |ui ) = P(dND∗
i (t) = 1 | zi , ui , Di ≥ t).

(2)
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The first lines in (1) and (2) follow from the assumption that the censoring mechanism
is conditionally independent of the two event processes given the process history.
Additionally, censoring is assumed to be non-informative.

Following Liu et al. (2004), we specify the intensities as

λi (t |ui ) = ui e
β ′ zi λ0(t),

hi (t |ui ) = uγ

i eα′ zi h0(t),
(3)

with baseline intensities λ0(t) and h0(t). The covariates zi affect the intensities of the
recurrent event process and death through a multiplicative model with effects β and α,
respectively. The inclusion of the frailty u in the recurrence intensity accommodates
heterogeneity across individuals and dependence between the recurrences within one
individual. The association between the recurrent events and death results from the
fact that the shared frailty u also enters the hazard of death. Due to the additional
parameterγ , themodel can capture associations of variablemagnitudes and in different
directions. For positive γ > 0, individuals with a higher intensity of recurrent events
will also be subject to a higher hazard of death. For γ < 0, a higher intensity of
recurrent events implies a lower hazard of death. If γ = 0, the intensities in (3) do
not share any parameters, and the censoring of the recurrence process by death is
non-informative.

The frailty U is a positive random variable. Among the distributions with positive
support the gamma and the log-normal distribution received most attention as frailty
distributions. The inverse-Gaussian and positive stable distribution are less frequently
used alternatives. For a comprehensive discussion of potential frailty distributions
see Wienke (2011) and Duchateau and Janssen (2008). The use of the log-normal
distribution is most prominent in models with multivariate frailties, for example, in
twin or family studies where different levels of relatedness should be represented.
Undoubtedly, the most common choice for the distribution of the frailtyU is a gamma
distribution. Besides mathematical convenience, Abbring and van den Berg (2007)
showed that in a large class of proportional hazards models the frailty distribution
converges over time to a gamma, thus lending strong support to this choice. In the
practical applications we will also choose a gamma distribution for the frailty U , but
our derivations in this section do not depend on a specific distribution.

Hence we more generally consider that the frailties ui follow a distribution with
a density of gθ (u) and a corresponding distribution function Gθ (u) with parame-
ter θ . This assumption refers to the initial distribution of frailties in the population at
time t0 = 0. However, if γ �= 0, the distribution of frailties in the population will
change over time due to selection effects, which will cause the population at time t to
be composed of survivors with lower mortality risks.

We now formulate the likelihood of the joint frailty model (3) when individuals are
observed from time t0 = 0. Let ti j , j = 1, . . . , Ji , be the observed recurrence times
of individual i . Based on the arguments stated in Liu et al. (2004), the conditional
likelihood contribution of individual i given his/her frailty value ui can be written as
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L(c)
i (ui ) =

⎡

⎣
Ji∏

j=1

λi (ti j |ui )
⎤

⎦ exp

{

−
∫ ∞

0
Yi (s)λi (s|ui ) ds

}

· hi (xi |ui )δi exp
{

−
∫ ∞

0
Yi (s)hi (s|ui ) ds

}

=
⎡

⎣
Ji∏

j=1

ui e
β ′ zi λ0(ti j )

⎤

⎦ exp

{

−
∫ xi

0
ui e

β ′ zi λ0(s) ds

}

(4)

·
[
uγ

i e
α′ zi h0(xi )

]δi
exp

{

−
∫ xi

0
uγ

i e
α′ zi h0(s) ds

}

.

The marginal likelihood Li of the observed data of individual i is obtained by inte-
grating the above expression over the frailty distribution,

Li =
∫ ∞

0
L(c)
i (u) dGθ (u) =

∫ ∞

0
L(c)
i (u) gθ (u) du. (5)

2.2 Adjusting for left truncation

Wewill nowextend the above framework to allow for left truncation, that is, individuals
entering the study at times that may be later than t0 = 0. Before deriving the likelihood
for the left-truncated data, we introduce some additional notation and assumptions.

A sample of mV independent individuals i , i = 1, . . . ,mV , is left-truncated if the
individuals i enter the studyonly at timesVi ≥ t0,with strict inequality for at least some
individuals. Then, the observation of individual i is conditional on his/her survival up
to the entry time, Di > Vi , and events can only be observed in the interval [Vi , Xi ].
Hence, the at-risk indicator Yi (t) of Sect. 2.1 is replaced by VYi (t) = 1{Vi ≤ t ≤ Xi }.

As a consequence, the observed recurrent event process VN R
i (t) = ∫ t

0 VYi (s)dN R∗
i (s)

= [N R∗
i (min (t, Xi ))−N R∗

i (Vi )]1{t > Vi } in this setting records only the recurrences
after study entry at Vi . Analogously, the left-truncated counting process of the termi-
nal event is given by VN D

i (t) = 1{Vi ≤ Xi ≤ t, δi = 1}. The observed data for
individual i are then VOi (t) = {VYi (s), VN R

i (s), VN D
i (s), Vi ≤ s ≤ t; zi ; Vi }, and the

σ -algebra is modified as VFt = σ {VOi (s), 0 ≤ s ≤ t, ui ; i = 1, . . . ,mV }.
In addition to the assumption of conditionally independent censoring already made

in Sect. 2.1, we further assume that the truncation times Vi are conditionally indepen-
dent of the recurrence and terminal event processes given the process history. Hence,
the intensity of the observed recurrence process is given by VYi (t)λi (t |ui ) and (1) is
adapted as

P(d VN
R
i (t) = 1 | VFt−, Di ≥ t) = VYi (t)λi (t |ui ). (1’)

The intensity of theobserved terminal event process is, correspondingly, VYi (t)hi (t |ui ),
such that (2) is modified as

P(d VN
D
i (t) = 1 | VFt−) = VYi (t)hi (t |ui ). (2’)
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Based on this, we can develop the likelihood of the joint frailty model (3) for
left-truncated data. The conditional likelihood contribution of individual i given ui is
constructed in analogy to (4), with Yi (s) replaced by VYi (s), and noting that only the
recurrence times ti j ≥ vi are observed; that is,

VL
(c)
i (ui ) =

⎡

⎣
∏

ti j≥vi

λi (ti j |ui )
⎤

⎦ exp

{

−
∫ ∞

0
VYi (s)λi (s|ui ) ds

}

· hi (xi |ui )δi exp
{

−
∫ ∞

0
VYi (s)hi (s|ui ) ds

}

=
⎡

⎣
∏

ti j≥vi

ui e
β ′ zi λ0(ti j )

⎤

⎦ exp

{

−
∫ xi

vi

ui e
β ′ zi λ0(s) ds

}

·
[
uγ

i e
α′ zi h0(xi )

]δi
exp

{

−
∫ xi

vi

uγ

i e
α′ zi h0(s) ds

}

.

(6)

In contrast to (4), the likelihood contribution (6) gives the probability of the observed
data conditional not only on the frailty value ui , but also on Di > Vi , as the data are
now observed conditionally on the individual’s survival to study entry.

Themarginal likelihood contribution is again obtained by integrating out the frailty.
However, as the frailty distribution in the sample of survivors differs from the frailty
distribution at time t0, we need to integrate over the conditional frailty distribution
given survival to the time of entry into the study. This point has previously been
discussed in the context of clustered survival data, among others, by van den Berg
and Drepper (2016) and Eriksson et al. (2015) and for general state duration models
by Lawless and Fong (1999). More formally, the marginal likelihood contribution of
individual i is thus

VLi =
∫ ∞

0
VL

(c)
i (u) dGθ (u | Di > vi , Vi = vi , zi )

=
∫ ∞

0
VL

(c)
i (u) dGθ (u | Di > vi , zi ), (7)

under the assumption that the truncation time Vi is independent of Ui .
In particular, if γ > 0 such that the recurrence process and the mortality process are

positively associated, individuals who survived up to time v will tend to have lower
frailty values than individuals who died before time v, for given zi . Hence, the frailty
distribution among survivors beyond time v, Gθ (u | D > v), will tend to have more
probability mass at lower values u than the frailty distributionGθ (u) in the underlying
population at time t0. Consequently, neglecting the effect of the survivor selection on
the frailty distribution in the sample and constructing a marginal likelihood as

VL
naive
i =

∫ ∞

0
VL

(c)
i (u) dGθ (u) =

∫ ∞

0
VL

(c)
i (u) gθ (u) du, (8)
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would lead to invalid inference if γ �= 0. We will illustrate the resulting biases in the
parameter estimates in a simulation study in Sect. 3.

For computing the correct marginal likelihood (7), we first apply Bayes’ theorem
to find that

gθ (u|Di > vi , zi ) = P(Di > vi | u, zi ) gθ (u)

P(Di > vi | zi ) = exp
{− ∫ vi

0 hi (s|u) ds
}
gθ (u)

∫ ∞
0 P(Di > vi | u) gθ (u) du

, (9)

where we suppress the dependence on the covariates zi in the last expression for
notational convenience. Combining equations (6), (7), and (9), we can express the
marginal likelihood contribution VLi of individual i with left-truncated data as

∫ ∞
0

[∏
ti j≥vi

λi (ti j |u)
]
exp

{
− ∫ xi

vi
λi (s|u) ds

}
hi (xi |u)δi exp

{− ∫ xi
0 hi (s|u) ds

}
gθ (u) du

∫ ∞
0 P(Di > vi | u) gθ (u) du

.

(10)

Interestingly, the formula for VLi in (10) could have been equivalently derived as
the marginal (with respect to the frailty) probability of the recurrence and follow-up
data on individual i , conditional on individual i being included in the study, Di > vi .
To see this, let us denote by Ei the event that individual i has follow-up time xi with
indicator δi and the observed recurrence times ti j over [vi , xi ], and consider

P(Ei | Di > vi ) = P(Ei ∩ {Di > vi })
P(Di > vi )

= P(Ei )

P(Di > vi )
=

∫ ∞
0 P(Ei | u) gθ (u) du

∫ ∞
0 P(Di > vi | u) gθ (u) du

.

As the integrals over the frailty distribution in (10) will not, in general, have closed
form expressions, we will use numerical integration in the following.

2.3 Estimation of the joint frailty model

Liu and Huang (2008) proposed using Gaussian quadrature to approximate the
marginal likelihood of frailty proportional hazards models, including the joint frailty
model (3). In combination with a suitable specification of the baseline intensities, this
approach allows for the direct maximization of the approximated likelihood which
results in shorter computation times as compared to approaches like the EM algo-
rithm. We also use Gaussian quadrature to estimate the parameters in the joint frailty
model for left-truncated data. The details are given in Section S.1 of the supplementary
material.

The evaluation of the approximatemarginal likelihood depends on the specific form
of the baseline intensities λ0(t) and h0(t). We adopt a piecewise constant model for
these functions,

λ0(t) =
K R
∑

k=1

λ0k1{t ∈ I Rk } and h0(t) =
K D
∑

k=1

h0k1{t ∈ I Dk }.
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with intervals I Rk = (t Rk−1, t
R
k ], k = 1, . . . , K R , and I Dk = (t Dk−1, t

D
k ], k = 1, . . . , K D .

Specificationswith amoderate number of up to 10 intervals and the cut-points tk , k ≥ 1,
which have been determined based on the quantiles of the observed event times, are
generally expected to lead to good results in practice (see Cook and Lawless 2007;
Liu and Huang 2008). In the setting with left truncation, appropriate choices have to
be made for the starting points of the first intervals, t R0 and t D0 . Depending on the study
design, they might be set equal to the lowest study entry time, mini vi , or a lower
value t∗ ≥ t0.

The direct maximization of the marginal likelihood would also be possible if the
baseline intensities were assumed to follow a simple parametric model, such as the
Weibull model. Nonetheless, we recommend the use of the more flexible piecewise
constant intensity models, unless prior knowledge allows for an informed choice of a
specific parametric model.

Finally, the parameter estimates in the joint frailtymodelwith left-truncated data are
obtained by maximizing the approximate marginal log-likelihood. Given the piece-
wise constant specification of the baseline intensities, this corresponds to standard
parametric maximum likelihood estimation with the usual asymptotic properties of
the estimators. The calculation of the standard errors is based on the inverse of the
negative Hessian matrix of the approximate marginal log-likelihood. We give addi-
tional details on the implementation in Section S.2 of the supplementary material.

3 Simulation study

To evaluate the performance of the proposed method for estimating the parameters of
the joint frailty model in case of left-truncated data, we conducted a simulation study.
We will also demonstrate which biases can arise if the likelihood is not correctly
adjusted to the survivor selection, in particular, to the selection effects on the frailty
distribution.

Estimator performance will depend on various aspects of the observation scheme.
One aspect is the distribution of the study entry times Vi , in which both the range
of the distribution and its shape matter. Furthermore, the censoring mechanism—that
is, the length of the individual follow-up periods and the number of additional drop-
outs—will influence the performance of the method. To study these issues, we will
first present a base scenario, and will then assess how different observational settings
affect the results.

3.1 Settings

In the base scenario, we generated data from a joint frailty model (3). The time scale t
is the age of the individual. The hazard of death and the intensity of recurrent events are
each affected by a single binary covariate, which is drawn from a Bernoulli distribu-
tion with parameter 0.5. The regression coefficients are α = 0.5 (death) and β = 0.5
(recurrence), respectively. The frailty values are realizations of a gamma distribution
with a mean of one and a variance of θ = 0.5. The values of the dependence parame-
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ter γ were chosen to cover a positive (γ = 0.5) and a negative (γ = −0.5) association
between the recurrence process and death, as well as the case in which the recurrence
intensity does not affect the mortality risk (γ = 0).

The baseline functions h0(t) and λ0(t) were designed to mimic a study in an older
population among whom the risks of death as well as of experiencing the recurrent
event increase exponentially with age. Hence, we chose for both baseline functions the
Gompertz-Makeham form, aebt + c, where t = 0 corresponds to age 75. By setting
a = 0.984, b = 0.045, and c = 0 for the recurrence process (λ0(t)), and a = 0.108,
b = 0.07, and c = 0.12 for the survival process (h0(t)), the baseline functions were
comparable to the estimated intensities for the high risk group in the data example in
Sect. 4.

To arrive at the left-truncated samples, the following steps were combined. For each
individual, a survival time D (i.e., age > 75) and an entry time into study V were
simulated. Only those individuals who survived beyond his/her entry time—that is, for
whom D > V—were included in the final sample (i.e., were ’observed’). Therefore,
the distribution of entry times V that are observed in the final sample depends on both
the mortality model in (3) and the initial distribution of the truncation times before
selection.

In the base scenario, our aim was to have entry times in the final sample that were
distributed across the total age range—here, ages 75 to 95—with higher numbers of
study entries at the younger ages than at the older ages. This scheme will be referred
to as truncation pattern A in the following.

To obtain a final observed sample with such characteristics, the entry times V were
drawn from a truncated normal distribution defined on the age range 75 to 95. More
specifically, the truncated normal distribution was specified to have a mode equal to
the maximum age of 95 with parameter values chosen so that the distribution of the
observed study entry times in the truncated sample had the desired shape (the left
panel of Fig. 1 illustrates this procedure). The initial number of generated survival
times was chosen such that the final truncated samples had an average size of about
mV = 500 individuals.

An independent censoring mechanism was imposed in the following way. For most
individuals, the censoring times were the end of a planned individual follow-up period
of tC = 4 years. However, some of the follow-up times were longer than four years,
and some premature random drop-outs occurred. Again, this was done in response
to the situation that we observed in the data application of Sect. 4. Accordingly, we
generated random durations from a mixture distribution with an 85% point mass at
tC , a 10% uniform distribution on [0, tC ], and a 5% uniform distribution on [tC , tC +
0.5], with the latter two covering the drop-outs before tC and the longer follow-up
periods, respectively. These random durations were added to the individual Vi , and
the individual censoring time Ci was the minimum of this sum and age 95.

The right panel of Fig. 1 illustrates how the mechanisms of truncation and cen-
soring jointly determine the number of individuals at risk at any time t across the
age range [75, 95]. Truncation pattern A causes the number of individuals at risk to
increase steeply at the early ages, and then to decrease only gradually across the age
range. However, due to the relatively short individual follow-up times, the number of
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Fig. 1 Distribution of the ages at study entry (left) and the number of individuals at risk across the age
range [75, 95] (right) for one simulated sample from the base scenario with truncation pattern A (shaded
bars, red line) or truncation pattern B (gray bars, black line), both with planned individual follow-ups of
four years (Color figure online)

individuals at risk across ages is considerably smaller than the total sample size of
about 500.

Under this observation scheme and with the Gompertz-Makeham baseline inten-
sities, the average number of observed recurrent events per individual ranges from
1.62 to 2.40 (with a mean of 2.04) across 200 final truncated samples generated from
the base scenario with a positive association. If there is no association, the range is
[2.88,3.93] (with a mean of 3.33). In the base scenario with a negative association,
the average number of recurrences per individual is comparatively high, ranging from
5.33 to 6.93 (with a mean of 6.09). This is due to the fact that the sample of survivors
tends to have lower death risks, which in this scenario with γ < 0 are associated with
relatively higher recurrence intensities.

In the setting with a positive association between the recurrence and mortality pro-
cess (γ = 0.5), additional simulation scenarios were set up by varying the censoring
and truncation patterns.

First, we considered the effect of changing the planned individual follow-up times
to tC = 1 year or tC = 8 years, respectively. Longer individual follow-up times
increase the number of individuals who are under observation at a certain time t , and
are therefore expected to improve the estimator performance.

Second, we explored a scenariowith amore unimodal distribution of the study entry
times in which relatively few individuals entered the study at the youngest and the
oldest ages (see Fig. 1). This is truncation pattern B. To obtain a final sample with these
characteristics, we simulated the initial truncation times again from a truncated normal
distribution on the age range 75 to 95. However, in this scenario, the distribution had
a mode equal to 90, that is, within the above age range.

Finally, we examined a settingwith awider age range of [64, 105]. If t = 0was now
expected to correspond to age 64, but theGompertz-Makehambaseline intensitieswere
expected to agree with the intensities of the base scenario over [75, 95], the parameters
needed to be adapted. This was achieved by maintaining the values of b and c, but
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setting a = 0.6 or a = 0.05 for the recurrence and death processes, respectively.
The initial distributions of the study entry times were adapted to produce truncation
patterns A or B on the wider age range [64, 105]. In all of the additional scenarios,
the truncated samples again had a target size ofmV = 500 individuals. The parameter
values for the distributions of the study entry times and the initial sample sizes for the
different scenarios can be found in Section S.3 of the supplementary material.

3.2 Estimation and results

The estimation of the joint frailty model was carried out under the assumptions of
gamma-distributed frailties with a mean of one and piecewise constant models for
the two baseline intensities λ0(t) and h0(t). For both intensities, 10 intervals were
used that were denoted by I Rk (recurrence process) and I Dk (mortality), k = 1, . . . , 10.
The intervals were determined by the deciles of the observed recurrence and survival
times, respectively. We set t R0 = t D0 = 75 (or t R0 = t D0 = 64) equal to the starting
point of the respective age range and t R10 = t D10 equal to the maximum follow-up time
in the sample. The marginal likelihood was approximated using non-adaptive Gauss-
Hermite quadrature with Q = 30 quadrature points. We ran 200 replications in each
setting. All computations were performed in R (R Core Team 2020). Further details
on the implementation are provided in Section S.2 of the supplementary material.

Figures 2 and 3 illustrate the results of the base scenario with different underlying
associations, γ ∈ {−0.5, 0, 0.5}. The top panels of Fig. 2 show that the covariate
effects α and β, the dependence parameter γ , and the frailty variance θ are estimated
without significant bias. The estimated standard errors of these parameters in the
bottom panels of Fig. 2 are largely in line with the empirical standard deviations of the
respective parameter estimates across the replications. Nevertheless, we notice that the
estimator performance varies for different true values of the dependence parameter.

This pattern can be explained to some extent by different survivor selection effects.
The truncated sample consists of survivors, who tend to have lower mortality risks.
For γ �= 0, these lower death risks are associated with relatively lower or higher recur-
rence intensities, which are also reflected in the differences in the average numbers of
recurrences per individual given in Sect. 3.1. In particular, if the recurrence process and
the mortality process are positively associated, this implies that the frailty values and
the recurrence intensities are lower in the sample of survivors. In the current setting,
this lower frailty variance in the sample is favorable for the estimation of θ ; whereas
the low recurrence intensity, which is associated with higher probabilities of having
no observed recurrent event, increases the variability in the corresponding estimated
covariate effect β̂. The opposite effects are observed if the event processes are neg-
atively associated. If the recurrence intensity has no effect on survival (γ = 0), the
method still yields reliable results, and the parameters exclusively affecting survival
are estimated with higher levels of precision.

We also calculated the coverage probabilities of 95%Wald confidence intervals for
the covariate effects, the dependence parameter, and the frailty variance across the 200
replications of the base scenario for each choice of γ ∈ {−0.5, 0, 0.5}. The values,
reported in Table 1, are close to the nominal level, indicating adequate coverage.
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Table 1 Coverage probabilities of 95% confidence intervals under the base scenario with varying depen-
dence parameter γ ∈ {−0.5, 0, 0.5} based on the correct or the naive likelihood, across 200 replications
each

Correct likelihood (7) Naive likelihood (8)

Dependence γ α β γ θ α β γ θ

0.5 0.945 0.955 0.920 0.960 0.855 0.420 0.855 0.810

0 0.945 0.955 0.955 0.945 0.960 0.945 0.960 0.920

−0.5 0.940 0.960 0.955 0.955 0.925 0.750 0.915 0.000

The estimates of the baseline intensities, displayed for the base scenario with pos-
itive dependence γ = 0.5 in Fig. 3, also perform satisfactorily.

It is instructive to look at how the results change if the effects of survivor selection
on the frailty distribution in the sample are not taken into account correctly. As Figs. 4
and 5 show, if the inference is based on the naively constructedmarginal likelihood (8),
biases can be seen in all parameter estimates in case the recurrence process and the
mortality process are associated. Moreover, as the estimated standard errors for the
covariate effects are substantially smaller than those obtained using the correct like-
lihood, they do not adequately reflect the uncertainty in the parameter estimates. As
a result, the coverage of the corresponding 95% Wald confidence intervals is mostly
much lower than the nominal level (see Table 1). The baseline intensities of recurrence
and death are increasingly underestimated for advancing age in the base scenario with
positive dependence (γ = 0.5), as depicted in Fig. 5. This is because in a setting
with a positive association, the distribution of frailty among the survivors tends to be
concentrated at lower values. Accordingly, for negative associations, the recurrence
intensity will be overestimated at the older ages, while the hazard of death will again
be underestimated at the older ages. Hence, failing to construct themarginal likelihood
based on the correct distribution of the frailty, see (7), introduces marked biases in
the estimates and the standard errors. Only if the event intensities are not associated
(γ = 0) is the distribution of frailty among survivors equal to the initial frailty distri-
bution Gθ , such that the naive marginal likelihood coincides with the correct marginal
likelihood (7) and yields valid inferences.

Lastly, we want to examine the results for the additional simulation scenarios with
modified censoring and truncation patterns. The figures illustrating these results can
be found in Section S.3 of the supplementary material. In the scenario with a planned
individual follow-up of only tC = 1 year, we find increased variability in all parameter
estimates (see Figures S.1 and S.2). This is expected, because with shorter individual
follow-up times, fewer individuals are observed at a given age t than in the base
scenario. Further extending the planned individual follow-up times of the base scenario
from tC = 4 to tC = 8 years does not lead to considerable improvements, apart
from some reduced variability in the estimates of the frailty variance and the baseline
intensities.

A change in the distribution of the study entry times can markedly influence the
estimation results. In the modified base scenario with truncation pattern B, the esti-
mated covariate effects α̂ and β̂ are more variable than under truncation pattern A,
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Fig. 2 Box plots of the parameter estimates (top) and estimated standard errors (bottom) in the joint frailty
model for positive (γ = 0.5), no (γ = 0), or negative (γ = −0.5) dependence under the base scenario.
Left to right: covariate effect on mortality (α) and on recurrences (β), dependence parameter (γ ), and frailty
variance (θ ) based on 200 truncated samples with a target size of 500. The red dashed line marks the true
parameter value (top) or empirical standard deviation (bottom); the gray dotted lines mark 10% deviations
from the respective value (Color figure online)

occasionally with negative estimates (see Figure S.3). In addition, the first piece of
each of the baseline intensities shows an upward bias (cf. top panels of Figure S.4)
because few individuals entered the study at the younger ages. Although the intervals
for the pieces of the baseline intensities were constructed to contain roughly equal
numbers of observed events, the first intervals cover a relative large age range with
few individuals under study at a given age t due to the delayed entry.

The last scenario combines a wider age range [64, 105] and truncation times spread
across the whole age range according to pattern A or B, with individual follow-ups
planned for tC = 4 years. This setting is more demanding because the amount of
information available at a given age t is considerably smaller than it is in the scenarios

123



Incorporating delayed entry into the joint frailty model…

with age range [75, 95]. Therefore, the variability in the estimates tends to increase,
and the estimates of the dependence parameter and the frailty variance exhibit a small
downward bias (see Figure S.3).

Overall, the simulation studies suggest that the proposed method for the estimation
of the joint frailty model based on left-truncated data performs satisfactorily. The
parameter estimates are largely unbiased if the study design ensures that a reasonable
number of individuals are under observation across time t . Including a relatively large
number of individuals early on and a preferably stable number of study entries across
the remaining time range benefits the estimation. In addition, the individual follow-up
times should be sufficiently long given the total time window and the sample size. As
expected, the patterns of censoring and truncation that cause more information to be
lost negatively affect the estimator performance.

4 Recurrent infections andmortality in an older population

Weapply the proposedmethod to data from a study on recurrent urinary tract infections
(UTIs) and mortality in an institutionalized elderly population (Caljouw et al. 2014).
The original study was set up to investigate whether cranberry capsules are effective in
preventing UTIs in elderly individuals (vs. placebo). Study participants were residents
of long-term care facilities and were between 64 and 102 years old when they entered
the study. In the present analysis the aim is to study the association between recurrent
UTIs and mortality, so both processes shall be modeled jointly. We consider age as the
main time scale of the event processes, as mortality and presumably also susceptibility
to infections naturally depend on age. Around 34% of the participants died during the
follow-up period which was set to one year. Ages at entry stretch over almost forty
years, so observations are left-truncated.
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Fig. 3 Estimates (gray) of the baseline intensity of recurrence (left) and of death (right) based on 200
truncated samples with a target size of 500 generated from a joint frailty model with positive dependence
(γ = 0.5) under the base scenario. The red bold line gives the true baseline intensity (Color figure online)

Apart from determining whether there is an association between the rate of UTIs
and mortality, we also seek to estimate the age-specific risks of UTIs and death as
well as the effects of the cranberry treatment. The participants were stratified into two
groups of high or low UTI risk depending on whether they had diabetes mellitus, a
urinary catheter, or at least one treated UTI in the preceding year. Within these two
strata, the participants were randomly assigned to the treatment or the control group.
For details on drug administration and diagnosis of UTIs see Caljouw et al. (2014).

The sample consisted of 928 individuals, most of whomwere women (703; 75.8%).
Of these individuals, 516 were considered to be at high baseline UTI risk, while 412
were in the low risk group. The distribution of entry ages is shown in the left panel of
Fig. 6. Follow-up time was about one year on average (mean: 332 days, median: 372
days). A total of 317 participants (34.2%) died during the study period. The number
of observed UTIs per individual ranged from zero to 10, with 62.2% of the individuals
having no UTIs, 20.8% having one UTI, and 17.0% experiencing two or more UTIs
during the follow-up period.

The origin of the time scale t0 = 0 corresponds to age 64, the youngest age of
entry into the study. Because of the specific distribution of the ages at study entry in
conjunction with the comparatively short individual follow-up times, relatively few
individuals were under observation at any given age, in particular at the youngest and
oldest ages, as the right panel of Fig. 6 shows.

We estimated the joint frailty model for UTIs and overall mortality separately for
the groups with high and low baseline UTI risk. Two binary covariates for treatment
and gender were included, and frailties were assumed to follow a gamma distribution
with a mean of one (at t0). The baseline intensity of UTI recurrence and the hazard
of death were specified as piecewise constant functions with 10 intervals over the age
range 64 to 103 in the high risk group and 64 to 104 in the low risk group. Separately
for the two risk groups, the cut-points for the intervals were determined based on the
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Fig. 4 Box plots of the parameter estimates (top) and estimated standard errors (bottom) based on the naive
likelihood of the joint frailty model for positive (γ = 0.5), no (γ = 0), or negative (γ = −0.5) dependence
under the base scenario. Left to right: covariate effect on mortality (α) and on recurrences (β), dependence
parameter (γ ), and frailty variance (θ ) based on 200 truncated samples with a target size of 500. The red
dashed line marks the true parameter value (top) or empirical standard deviation (bottom); the gray dotted
lines mark 10% deviations from the respective value (Color figure online)

deciles of the observed recurrence or death times, respectively. The likelihood was
approximated using non-adaptive Gaussian quadrature with 30 nodes.

The parameter estimates for both risk groups are reported in Table 2. In the group
with a high baseline UTI risk, the intensities of recurrent infection varied between
participants with an estimated frailty variance of θ̂ = 0.380 (SE: 0.086). In particular,
individuals with a higher intensity of recurrent infections tended to also experience
higher mortality risks, as indicated by the positive estimate of the dependence param-
eter, γ̂ = 0.181 (SE: 0.084). The participants in the low risk group seemed to be more
heterogeneous (θ̂ = 1.122, SE: 0.316), but the analysis did not detect an association
between the occurrence of UTIs and survival (γ̂ = 0.058, SE: 0.044). The results
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Fig. 5 Estimates (gray) of the baseline intensity of recurrence (left) and of death (right) based on the naive
likelihood for 200 truncated samples with a target size of 500 generated from a joint frailty model with
positive dependence (γ = 0.5) under the base scenario. The red bold line gives the true baseline intensity
(Color figure online)

Fig. 6 Distribution of the ages at study entry (left) and the number of individuals under observation across
the age range (right) in the cranberry data set, separately for the groups with high baseline UTI risk (gray
bars, black solid line) and low baseline UTI risk (shaded bars, red dashed line) (Color figure online)

suggest that the cranberry capsules did not have a noticeable effect on the occurrence
of UTIs irrespective of the baseline UTI risk. When we look at gender differences, we
see that males and females experienced similar intensities of infection, while males
had higher mortality levels than females in both groups.

The estimated baseline intensities displayed in Fig. 7 demonstrate nicely the age
dependence of the recurrence intensity and the hazard of death. For the individuals
with a high baselineUTI risk, both the intensity of recurrent infection and themortality
risk showed a general tendency to increase with age, although the small number of
observations leads to considerable uncertainty at the highest ages. In addition, the
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Table 2 Parameter estimates (with standard errors) for the joint frailty model fitted to the cranberry data
set, separately by risk group

High baseline UTI risk Low baseline UTI risk

Recurrent UTIs

Treatment (cranberry) 0.000 (0.161) 0.189 (0.217)

Gender (male) 0.061 (0.218) − 0.384 (0.381)

Mortality

Treatment (cranberry) 0.107 (0.152) − 0.001 (0.197)

Gender (male) 0.396 (0.178) 0.787 (0.210)

Association

Dependence γ 0.181 (0.084) 0.058 (0.044)

Frailty variance θ 0.380 (0.086) 1.122 (0.316)

Fig. 7 Estimated baseline intensities (solid) of recurrence (left) andmortality (right) with±2 SE-confidence
bounds (dashed) for the cranberry data, separately for the groups with high baseline UTI risk (top) and low
baseline UTI risk (bottom)
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individuals with a high baseline UTI risk tended to experience higher intensities of
recurrent infection and death than the individuals with a low baseline UTI risk.

The original study,which used time since randomization as scale, reported a positive
treatment effect of the intake of cranberry capsules only in the group with a high
baseline UTI risk and only for the outcome of UTI incidence (first infection during
follow-up). When all recurrent UTIs were analyzed in a gamma-frailty model, no
treatment effect was detected, which is in line with the findings presented here.

5 Discussion

We have studied the extension of a method for estimating the joint frailty model
for recurrent events and a terminal event to the setting with left-truncated data. The
marginal likelihood of the model can be expressed as a ratio of two integrals over the
frailty distribution. For computing the marginal likelihood we used Gauss-Hermite
quadrature.

The simulation studies presented here have shown that the estimation procedure
performs satisfactorily in general, and have demonstrated how different observation
schemes affect the estimator performance.While any pattern of truncation or censoring
results in incomplete information, study designs should still aim to provide enough
information to meet the needs of a model as complex as the joint frailty model. Having
a sufficient number of individuals under observation across most of the time range,
and especially at the start of the process, seems to be crucial for the method to yield
reliable results.

Allowing for left truncation in frailty models requires us to consider carefully how
the frailty distribution in the sample of survivorsmay differ from the frailty distribution
in the underlyingpopulationdue to selection effects.We illustrated through simulations
the biases that can arise in the parameter estimates of the joint frailty model if this
difference in the frailty distributions is ignored.

Extending the framework of the joint frailty model to incorporate delayed entry
allowed us to study age-specific risks of recurrent urinary tract infections and death
in an older population. Similarly, the proposed approach enables researchers to use
the joint frailty model in a wider variety of contexts in which subjects are included
in a study only if they have not yet experienced the terminal event. Apart from clin-
ical studies with delayed entry, these contexts may include register-based studies of
event processes evolving with age as the main time scale, with individuals entering at
different ages.

For a complete specification of the model and the approximate likelihood function,
the frailty distribution and the baseline intensities have to be chosen. The number of
quadrature points also has to be fixed.

Although the simulation study and the application covered only the common choice
of a gamma distribution for the frailties, the quadrature approach can be employed
with other frailty distributions that have a closed form inverse distribution function,
or a log-normal distribution. The use of Gaussian quadrature, in the way it was pre-
sented here, is not the only option. However, comparisons with some readily available
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‘all-purpose’ numerical integrationprocedure (theR-function integrate()) showedcon-
siderable advantages regarding computation times.

If the baseline intensities are specified by parsimonious parametric models, such
as, for example, Weibull hazards, then the marginal likelihood will be a function of
a moderate number of parameters that can be maximized directly. However, global
parametric specifications require problem-specific knowledge as they always bear the
risk of misspecification and therefore of biases. Piecewise constant specifications of
the baseline intensities are a flexible alternative, still preserving the computational
advantages of parametric models, and have therefore repeatedly been suggested in
the literature. Naturally, sample size will guide the flexibility, that is, the number of
intervals (parameters), that can be afforded, but specifications with amoderate number
of up to 10 intervals generally lead to good results in practice (see Cook and Lawless
2007; Liu and Huang 2008). The positions of the cut points commonly are determined
based on the quantiles of the observed event times and capture the required flexibility
well. If flexible smooth estimates of the intensities are required then approaches like
penalized splines are an alternative, however, automatic smoothing parameter selection
in joint frailty models needs further investigation.

The number of quadrature points determines the accuracy of the integral approx-
imations in the marginal likelihood, as well as the computation time. In line with
previous recommendations for gamma frailty models (see Liu and Huang 2008), we
used Q = 30 quadrature points, which produced good results in a reasonable period
of time in our settings.

The joint frailty model generally can also incorporate time-dependent covariates
(Liu et al. 2004). Yet, in the situation with delayed entry, including a time-dependent
covariate in the survival model would require us to know the covariate values at
times t ≥ t0 before study entry, which may not be available depending on the appli-
cation.

Moreover, the current approach is limited to applications in which there is hetero-
geneity in recurrence intensities. Due to the specific dependence structure in the joint
frailty model considered here, the association between the recurrence process and the
terminal event process cannot be assessed if the frailty variance is close to zero.

Finally, in some applications, it might be of interest to extend the proposed method
to use information on recurrences before entry into the study. These additional event
times can be included in the marginal likelihood, and are expected to lead to increased
precision in the estimation of the model for the recurrence process. However, when
using such an approach, researchers should reflect critically on the quality of the ret-
rospectively collected data, as recollections by study participants may be less reliable
than data drawn from other sources, such as registries.

We have focused on adapting the joint frailty model as introduced by Liu et al.
(2004), which specifies the complete intensities for both event processes, to left-
truncated observations. An alternative approach to the analysis of recurrent events in
the presence of a terminal event was presented by Kalbfleisch et al. (2013). They con-
sider a partial marginal rate function of the recurrent event process that is conditional
only on the frailty and the covariates. Inference is based on a set of estimating equations
with Breslow-type estimators for the baseline rate and hazard function. Adapting this
approach to take left truncation into account seems feasible, but is beyond the scope of
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this paper. A thorough investigation of the method’s performance would be required,
in particular, to assess the effects of intervals with few individuals at risk. This is a
topic for future research.
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